Automatic Construction of Fuzzy Rule Bases: a further Investigation into two Alternative Inductive Approaches
نویسندگان
چکیده
The definition of the Fuzzy Rule Base is one of the most important and difficult tasks when designing Fuzzy Systems. This paper discusses the results of two different hybrid methods, previously investigated, for the automatic generation of fuzzy rules from numerical data. One of the methods, named DoC-based, proposes the creation of Fuzzy Rule Bases using genetic algorithms in association with a heuristic for preselecting candidate rules based on the degree of coverage. The other, named BayesFuzzy, induces a Bayesian Classifier using a dataset previously granulated by fuzzy partitions and then translates it into a Fuzzy Rule Base. A comparative analysis between both approaches focusing on their main characteristics, strengths/weaknesses and easiness of use is carried out. The reliability of both methods is also compared by analyzing their results in a few knowledge domains.
منابع مشابه
Evolutionary Optimization for Intelligent Systems Design J.UCS Special Issue
Evolutionary Optimization is becoming omnipresent technique in almost every process of intelligent system design. Just to name few, engineering, control, economics and forecasting are some of the scientific fields that take advantage of an evolutionary computational process that aid in engineering systems with intelligent behavior. This special issue of Journal of Universal Computer Science is ...
متن کاملAn investigation into the application of neural networks, fuzzy logic, genetic algorithms, and rough sets to automated knowledge acquisition for classification problems
This paper presents some highlights in the application of neural networks, fuzzy logic, genetic algorithms, and rough sets to automated knowledge acquisition. These techniques are capable of dealing with inexact and imprecise problem domains and have been demonstrated to be useful in the solution of classification problems. It addresses the issue of the application of appropriate evaluation cri...
متن کاملImprovement of Rule Generation Methods for Fuzzy Controller
This paper proposes fuzzy modeling using obtained data. Fuzzy system is known as knowledge-based or rule-bases system. The most important part of fuzzy system is rule-base. One of problems of generation of fuzzy rule with training data is inconsistence data. Existence of inconsistence and uncertain states in training data causes high error in modeling. Here, Probability fuzzy system presents to...
متن کاملSelecting the Optimal Rule Set Using a Bacterial Evolutionary Algorithm
In many regression learning algorithms for fuzzy rule bases it is not possible to define the error measure to be optimized freely. A possible alternative is the usage of global optimization algorithms like genetic programming approaches. These approaches, however, are very slow because of the high complexity of the search space. In this paper we present a novel approach where we first create a ...
متن کاملNeuro-Fuzzy Systems for Rule-BAsed Modelling of Dynamic Processes
The aim of this paper is to present and compare four different neuro-fuzzy approaches to the construction of fuzzy rule-based models for dynamic processes. These approaches have been applied to modelling of an industrial gas furnace system (Box-Jenkins benchmark). The following neuro-fuzzy systems have been considered: nfMod – the system proposed in this paper, the well-known ANFIS and NFIDENT ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. UCS
دوره 14 شماره
صفحات -
تاریخ انتشار 2008